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I. INTRODUCTION

The use of kinetic theory for describing many-body inter-
actions has a long tradition reaching back at least to the work
of Boltzmann �1,2�. Before the advent of direct numerical
simulations made possible by powerful computers, this and
related coarse-grained statistical theories generally provided
the only practical means for addressing large-scale problems.
Only recently have direct numerical simulations of large as-
semblies of individual particles, waves, or neurons advanced
to the degree that they provide qualitatively if not quantita-
tively accurate descriptions of the problems under study. Two
examples of the use of kinetic theory for objects other than
particles are wave turbulence �3–9� and neuroscience
�10,11�. Subsequent simulations of turbulent wave dynamics
�12–17� and neuronal processing in parts of the cerebral cor-
tex �18–26� largely confirmed the predictions obtained via
the kinetic theory. Even now, important roles remain for the
kinetic and like theories, both in finding solutions to prob-
lems that are still too large to be amenable to simulation and
also in identifying and providing a more fundamental under-
standing of mechanisms underlying physical phenomena un-
der study. It is therefore important to study analytically the
mathematical properties of these coarse-grained theories.

In this work, we study the basic properties of the kinetic
theory for the simplest version of conductance-driven
integrate-and-fire �IF� models of all-to-all coupled excitatory
neuronal networks. In this version, we use the approximation
that, upon receiving a spike, the excitatory conductances
both rise and decay infinitely fast. After the introduction of
the diffusion approximation in the limit of small synaptic-
input fluctuations, the kinetic theory reduces to a Fokker-
Planck equation for the probability density function of the
neuronal membrane potential in the network �27,28�. Exten-
sive studies of this equation for a feed-forward neuron driven
by white and colored noise were performed in �29–34�. Here,
we investigate several important theoretical consequences of
the Fokker-Planck equation for an all-to-all coupled network

of neurons. In particular, we analyze the asymptotic proper-
ties of its steady-state solutions in the diffusion limit and
derive from these solutions the network gain curves, i.e.,
curves depicting the dependence of the network firing rate on
the intensity of the external driving. We find these gain
curves to exhibit bistability and hysteresis for sufficiently
small synaptic-input fluctuations. In addition, in the two re-
gimes separated by the instability region, we derive explicit
asymptotic solutions of the Fokker-Planck equation describ-
ing the voltage probability density function, and also seg-
ments of the gain curves, in terms of elementary functions.
We emphasize that the problem involving the Fokker-Planck
equation which we study here is not of the usual linear type.
Instead, it is highly nonlinear due to the presence of the
average neuronal firing rate as a multiplicative self-
consistency parameter in both the equation and its boundary
conditions. This presence is due to the fact that the Fokker-
Planck equation in this case describes statistically the dy-
namics of an entire neuronal network, not just a single neu-
ron.

Typically, two types of coarse-grained descriptions are
considered for neuronal networks: mean-driven �10,35–39�
and fluctuation-driven �11,28,40–56�. The former only accu-
rately describes the network activity when the mean of the
external drive is by itself strong enough to induce neuronal
spiking, while the latter is also valid in the regime in which
considering the mean of the external drive alone would pre-
dict no spiking at all. In the limit of vanishing synaptic-input
fluctuations, the kinetic theory studied in this work repro-
duces a version of the mean-driven model of �38� and we
show how this model can be solved exactly by an explicit
parametrization. We provide a complete description of this
mean-driven model’s gain curves, including their bistability
intervals and asymptotic behavior for large values of external
drive. We also investigate how the solutions and gain curves
obtained from the Fokker-Planck equation approach the cor-
responding mean-driven solutions and gain curves in the
limit as the synaptic-input fluctuations decrease and eventu-
ally vanish.

Finally, we study the validity of the Fokker-Planck de-
scription by comparison to direct numerical simulations of a
conductance-based IF neuronal network with very short con-*Email: cai@cims.nyu.edu
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ductance rise and decay times. In the regime of small
synaptic-input fluctuations, in which the Fokker-Planck
equation is expected to be valid, we indeed find excellent
agreement between the simulations and theory. When the
ratio of the synaptic-input fluctuations to its mean exceeds
the values for which the Fokker-Planck description is appro-
priate, we find that the theoretical gain curves still have a
functional form very similar to that of the curves obtained
through simulations, except that their slopes at high drive
values become too large.

The remainder of this paper is organized as follows. In
Sec. II, we describe the IF model under investigation. In Sec.
III, we present the kinetic equation derived from this IF
model and discuss how to obtain the network firing rate from
it. In Sec. IV, we introduce the diffusion approximation and
derive the corresponding Fokker-Planck equation from the
kinetic equation in the diffusion limit. We also describe the
validity conditions for the diffusion limit in terms of the
original IF network properties. In Sec. V, we give a complete
analytical solution of the mean-driven limit and find its bi-
stability intervals. The exact solution for the voltage prob-
ability density function in terms of integrals is described in
Sec. VI and an exact equation for the corresponding gain
curve is derived in terms of generalized hypergeometric
functions. In Sec. VII, we present a uniform asymptotic ap-
proximation for the voltage probability density function valid
in the regime of small synaptic-input fluctuations and use it
to find the functional form of the gain curves. In Sec. VIII,
we find two simpler asymptotic approximations for this den-
sity function and the gain curves away from the bistability
region. The validity of the Fokker-Planck description is dis-
cussed via comparison to direct numerical simulations of an
IF network with short conductance rise and decay times in
Sec. IX. Implications and ramifications of the results are dis-
cussed in Sec. X. Finally, in the Appendix, a detailed deriva-
tion of the uniform asymptotic approximation for the voltage
probability density function for small synaptic-input fluctua-
tions is described.

II. INTEGRATE-AND-FIRE NETWORK

We consider a conductance-based IF neuronal network
composed of N excitatory neurons with instantaneous con-
ductance rise and decay rates �57�. The dynamics of the
membrane potential Vi of the ith neuron in this network is
described by the linear differential equation

�
dVi

dt
= − �Vi − �r� − � f�

j

��t − �ij� +
S

pN
�
k=1

k�i

N

�
l

pikl��t − tkl��
��Vi − �E� . �1�

Here, the expression in the square brackets describes the ith
neuron’s conductance arising from its synaptic input. The
first term of this expression represents the contribution from
the afferent external input spikes and the second from the
network spikes. Among the parameters in Eq. �1�, � is the
leakage time scale, �ij is the jth spike time of the external
input to the ith neuron, tkl is the lth spike time of the kth

neuron in the network, f is the external input spike strength,
S / pN is the coupling strength, �r is the reset potential, and �E
is the excitatory reversal potential. We assume the nondimen-
sionalized values

�r = 0, VT = 1, �E =
14

3
, �2�

with VT being the firing threshold. For the leakage time scale,
we assume �=20 ms, which corresponds to �=1 in our di-
mensionless units. The coefficients pikl model the stochastic
nature of the synaptic release �58–63�. Each of them is an
independent Bernoulli-distributed random variable such that
pikl=1 with probability p and 0 with probability 1− p at the
time tkl when a network spike arrives at the ith neuron. We
scale the coupling strength by the “effective size” of the
network, pN, so that the total network input to each neuron
remains finite in the limit of large network size N and does
not vanish for small values of the synaptic release probability
p.

Except at the spike times �ij or tkl, the membrane potential
Vi decays exponentially toward the reset potential �r, as in-
dicated by the first term on the right-hand side of Eq. �1�.
When the ith neuron receives a spike, its membrane potential
jumps. The relation between the values of the ith neuron’s
membrane potential Vi immediately before and after the
times of its incoming spikes is derived to be

Vi��ij
+� = �1 − ��Vi��ij

−� + ��E, � = 1 − e−f/� �3a�

for an external input spike and

Vi�tkl
+ � = �1 − ��Vi�tkl

− � + ��E, � = 1 − e−S/pN� �3b�

for a network neuron spike, provided Vi��ij
+�, Vi�tkl

+ �	VT, re-
spectively �28,55�. Here, the superscripts + and − denote the
right-hand and left-hand limits, respectively.

Since in the absence of incoming spikes, its voltage can
only decrease, any neuron in the network �1� can only spike
when it receives a spike itself. In particular, the kth neuron
can only spike when its membrane potential exceeds the fir-
ing threshold VT as a result of a jump in Eq. �3a� or one or
more simultaneous jumps in Eq. �3b�. At this time, say tkl, a
spike is distributed to each of the other neurons in the net-
work, i.e., the term �S / pN���t− tkl��Vi−�E� is added with
probability pikl to every equation for the membrane potential
�1� with i=1, . . . ,N, i�k. The kth neuron’s membrane po-
tential Vk is reset to the value �r. Note that every membrane
potential Vi remains confined in the interval �r
Vi
VT for
all times.

We assume that the external input spike train ��ij	 arriving
at the ith neuron in the network is an independent Poisson
process for every i=1, . . . ,N, with the rate ��t�. The spikings
of any given network neuron do not, in general, constitute a
Poisson process. Moreover, as described in the previous
paragraph, each of the ith neuron’s spike times must coincide
either with a spike time of its external drive or a spike time
of one or more other network neurons, which again coincides
with a spike time of some network neuron’s external drive.
However, we are mainly interested in the case of high
external-drive Poisson rate, ��t��1 /�, and moderate
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population-averaged firing rate per neuron, m�t�. �This im-
plies that the external-drive spike strength f should be small.�
Thus, if the number of neurons N in the network is suffi-
ciently large and the synaptic release probability p suffi-
ciently small, we can assume that each neuron spikes ap-
proximately independently of other network neurons and of
its own external drive and also relatively infrequently. There-
fore, we are justified in assuming that the network spike
times, �tkl 
k=1, . . . ,N , l=1,2 , . . .	, can be approximated by
a Poisson process �64� and that this process is approximately
independent of the external-drive spike trains to the network
neurons. Note that the network firing rate is Nm�t�, where
m�t� is the population-averaged firing rate per neuron in the
network referred to above.

III. KINETIC EQUATION

A probabilistic description of the network dynamics for
Eq. �1� is obtained by considering the probability density


�v,t� =
1

N
�
i=1

N

E�� �v − Vi�t��	 , �4�

where E� · � is the expectation over all realizations of the
external input spike trains and all initial conditions. The ki-
netic equation for 
�v , t�,

�t
�v,t� = �v��v − �r

�


�v,t�� + ��t�� 1

1 − �

�v − ��E

1 − �
,t


− 
�v,t�� + Npm�t�� 1

1 − �

�v − ��E

1 − �
,t
 − 
�v,t��

+ m�t���v − �r� , �5�

is derived in a way similar to �28,55�, where the coefficients
� and � are as in Eqs. �3a� and �3b�. The last term in Eq. �5�
represents the probability source due to the neuronal mem-
brane potentials being reset to v=�r after crossing the firing
threshold at v=VT.

Equation �5� can be written in the conservation form

�t
�v,t� + �vJ�v,t� = m�t���v − �r� , �6�

with the probability flux

J�v,t� = JS�v,t� + JI�v,t� . �7�

Here,

JS�v,t� = − �v − �r

�


�v,t� �8a�

is the flux due to the smooth streaming of phase points under
the relaxation dynamics in Eq. �1�, while

JI�v,t� = ��t��
�v−��E�/�1−��

v


�u,t�du

+ Npm�t��
�v−��E�/�1−��

v


�u,t�du �8b�

is the flux due to jumps induced by both the external input
and neuronal spiking.

A boundary condition for Eq. �5� can be derived by re-
calling that a neuron in the network �1� can only fire upon
receiving a spike and that its membrane potential cannot
stream up to move across the firing threshold VT. Thus, on
the one hand,

JS�VT,t� = − �VT − �r

�


�VT,t� 
 0,

but on the other hand, negative relaxation flux at v=VT is
impossible since no neuron’s voltage can ever stream back
down from VT via relaxation: once it reaches the threshold
VT, it can only return to the reset value �r. Therefore,

JS�VT,t� � 0 �9�

and so


�VT,t� � 0 �10�

is a boundary condition for Eq. �5� �28,55�.
The firing rate m�t� is given by the probability flux

J�VT , t� across the threshold VT, which, in light of the defi-
nitions �7� and �8b� and the boundary condition �9�, reads

m�t� = J�VT,t� = JI�VT,t� = ��t��
�VT−��E�/�1−��

VT


�u,t�du

+ Npm�t��
�VT−��E�/�1−��

VT


�u,t�du . �11�

Moreover, since 
�v , t� is a probability density function de-
fined on the v interval �r	v	VT, it must satisfy the nonne-
gativity condition


�v,t� � 0 �12�

and the normalization condition

�
�r

VT


�v,t�dv = 1. �13�

The simultaneous presence of the firing rate m�t� as a
self-consistency parameter in the kinetic equation �5� and the
boundary conditions �11�, together with the normalization
condition �13�, makes the problem at hand highly nonlinear.

IV. FOKKER-PLANCK EQUATION

For small values of the external drive and network spike
strengths, f and S / pN, respectively, we can obtain the diffu-
sion approximation to the kinetic Eq. �5� by Taylor-
expanding the differences in the terms arising from the volt-
age jumps �55�. Here, the smallness of the spike strengths f
and S / pN is interpreted in terms of the minimal number of
spike-induced voltage jumps a neuron with the initial mem-
brane potential at the reset value �r must undergo in order to
fire. In particular, this number must be large for the diffusion
approximation to hold. Using the jump conditions �3a� and
�3b�, this requirement gives rise to the jump-size estimates

f ,
S

pN
� �

B − 1

B
, �14�

where

FOKKER-PLANCK DESCRIPTION OF CONDUCTANCE-… PHYSICAL REVIEW E 80, 021904 �2009�

021904-3



B =
�E − �r

�E − VT
. �15�

The number of jumps can be estimated by the smaller of the
two ratios, ���B−1� /B� / f or ���B−1� /B� / �S / pN�. Moreover,
in this regime, in order for the network neurons to maintain
nonvanishing firing rates, the input Poisson rate must be suf-
ficiently large. In particular, the external input spike strength
f and the Poisson rate � must satisfy the conditions

f

�
� 1, �� � 1, f� = O�1� . �16�

Note that these conditions are consistent with the require-
ment that the spike train produced jointly by the network
neurons be �approximately� independent of any individual
neuron’s external driving train, discussed at the end of Sec.
II.

An equivalent approach to Taylor-expanding the differ-
ence terms in Eq. �5� is to approximate Eq. �6� by expanding
the probability flux J�v , t� in Eq. �7� using the trapezoidal
rule to evaluate the respective integrals in Eq. �8b�. Thus, we
obtain for Eq. �7� the expression

J�v,t� = −
1

�
���a + q2�v − �a + q2 − 1��E − �r�
�v,t�

+ q2��E − v�2�v
�v,t�	 , �17�

with the coefficients

a = 1 + f� + Sm, q2 =
1

2�
� f2� +

S2m

pN

 . �18�

The flux �7� satisfies the equation

J��r
+� − J��r

−� = m�t� ,

as can be gleaned from Eq. �6�. Moreover, since 
�v
	�r , t��0, we have J�v	�r , t��0 and we find that for �r
	v	VT the probability density function 
�v , t� obeys the
partial differential equation

�t
�v,t� + �vJ�v,t� = 0, �19�

that is, the Fokker-Planck equation

��t
�v,t� = �v���a + q2�v − �a + q2 − 1��E − �r�
�v,t�

+ q2��E − v�2�v
�v,t�	 , �20�

with the flux boundary condition

J��r
+,t� = J�VT,t� = m�t� . �21�

Here, the flux J�v , t� is given by Eq. �17� �28,54,55�.
We retain the boundary condition 
�VT , t�=0 in Eq. �10�

as the absorbing boundary condition for the Fokker-Planck
equation �20� in the diffusion limit �28,55�. Likewise, we
retain the non-negativity condition �12� and the normaliza-
tion condition �13�. In this approximation, again, the Fokker-
Planck equation �20�, together with the boundary conditions
�10� and �21� and the normalization condition �13�, gives rise
to a highly nonlinear problem due to the simultaneous occur-
rence of the firing rate m�t� as a multiplicative self-

consistency parameter in both Eqs. �20� and �21�.
Note that the ratio q2 /a of the two coefficients a and q2,

as defined in Eq. �18�, is controlled by the two jump sizes,
f /� and S /�pN, which also control the validity of the diffu-
sion approximation according to Eq. �14�. Since the ratio
q2 /a controls the size of the fluctuation term in Eq. �20�, the
inequalities in Eqs. �14� and �16� imply that the diffusion
approximation leading to the Fokker-Planck equation �20�
also prompts the corresponding neuronal dynamics to be in
the small-fluctuation limit

q2

a
� 1. �22�

We will be primarily interested in the steady solutions of
Eq. �20�. In view of the conservation form �19�, with J�v , t�
as in Eq. �17� and the boundary conditions �21�, we find that
Eq. �20� can in this case be replaced by the first-order linear
differential equation

��a + q2�v − �a + q2 − 1��E − �r�
�v� + q2��E − v�2�v
�v�

= − m� , �23�

with a and q defined in Eq. �18�. We require the steady
probability density function 
�v� to satisfy the boundary con-
dition 
�VT�=0 in Eq. �10�, as well as the conditions �12� and
�13�. From these equations, we can derive the gain curve,
i.e., the firing rate m as a function of the external driving
strength f�. We carry out this derivation and its analysis
below.

V. MEAN-DRIVEN AND FLUCTUATION-DRIVEN LIMITS

We begin by analyzing the limiting case of the regime in
Eq. �16� in which f →0 and pN, �→� such that f�=O�1�.
There are no input conductance fluctuations in this limit and
so q2 /a→0 in Eq. �22�. Note that, in this limit, the effect of
the external-drive Poisson train on the network dynamics
becomes identical to that of a time-independent excitatory
conductance with the mean value of this train’s strength, f�.

The stationary equation �23� in this limit reduces to


�v� =
�m

a�VS − v�
, �24�

where

VS =
�r + �a − 1��E

a
�25�

is the effective reversal potential �65� and a is defined in Eq.
�18�. Since the v derivative �v
�v� in Eq. �23� is lost in the
limit as q→0, it is consistent to naturally drop the boundary
condition �10�.

The density 
�v� in Eq. �24� must satisfy the condition

�v��0 in Eq. �12� for �r
v
VT. Since a�0, it is easy to
show that VS��r and so the condition �12� is satisfied when

VT 	 VS, i.e., a � B , �26�

where B is defined as in Eq. �15�. The condition a�B cor-
responds to the fact that the neuronal voltages must stream
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upwards at the threshold VT for the neurons to fire; in other
words, m�0 under the mean drive f�+Sm. The normaliza-
tion condition �13� then yields

m =
a

� ln
VS − �r

VS − VT

. �27�

From Eqs. �18� and �25�, we observe that Eq. �27� gives a
nonlinear equation for the firing rate m in terms of the driv-
ing strength f�. In view of the comment made in the first
paragraph of this section that the neuronal dynamics in the
present limit are driven by the mean of the external input
spike train, we refer to Eq. �27� as describing the mean-
driven limit of our neuronal network.

The case when VS	VT, i.e., a	B, corresponds to the
case when m=0. Replacing the external drive in Eq. �1� by
its mean f�, we find that all the neuronal membrane poten-
tials settle at the value v=VS after a time period of O��� and
this is why no neurons can spike. In other words, the steady-
state voltage probability density 
�v� becomes 
�v�
=��v−VS�, where �� · � is again the Dirac delta function. This
result can also be deduced from the appropriate solution to
the full Eq. �23�, as will be done in Sec. VIII A. We will refer
to the corresponding operating regime of the network, de-
picted by the interval 0	 f�	B−1 in the f�−m plane
shown in Fig. 1, as the fluctuation-driven regime. In particu-
lar, in the present limit of vanishing fluctuations, the network
firing rate also vanishes in this regime.

We now return to analyzing the solution of Eq. �27�. From
Eqs. �15�, �18�, �25�, and �27�, we arrive at the exact para-
metric representation of the m− f� gain curve in terms of the
parameter a,

m =
a

� ln
B�a − 1�

a − B

, �28a�

f� = a − 1 −
Sa

� ln
B�a − 1�

a − B

, �28b�

which holds in the mean-driven regime, a�B. In particular,
for every a, we can find the exact value of the firing rate m
that corresponds to its external drive f�.

The graphs of the gain curves, m versus f�, in the mean-
driven limit, are presented in Fig. 1 for several different val-
ues of the parameter S. From simple analysis, it is clear that
the graph of m versus f� begins at the “driving threshold”
value, f�=B−1= �VT−�r� / ��E−�r�, and m=0, going back-
ward in f�, with the initial derivative −1 /S. The threshold
value f�=B−1 corresponds to the external input Poisson
spike rate � being sufficiently large that, on average, the rate
of the neuronal membrane-potential increase in the IF net-
work �1� induced by the external input spikes exceeds its
downward streaming rate due to the leakage.

For large values of the parameter a, every gain curve
asymptotes toward its own straight line

m =
f� + 1 − �B − 1�/ln B

� ln B − S
. �29�

If S�� ln B, the gain curve has a negative slope everywhere
and terminates with a nonzero firing rate m at f�=0, such as
the leftmost curve in Fig. 1. If S	� ln B, the gain curve
turns around in a saddle-node bifurcation, such as the second
and third gain curves from the right in Fig. 1. The location of
this saddle-node bifurcation is at the intersection of the gain
curve and the gray �red online� dashed curve in Fig. 1. The
gain curve passes through a bistability interval that begins at
the saddle-node bifurcation point and ends at the driving
threshold f�=B−1. The gain curve in the limit of vanishing
coupling strength, S→0, has an infinite derivative at the
point f�=B−1 and m=0 and then monotonically increases as
a graph of m versus f� with a monotonically decreasing de-
rivative, reflecting the fact that an uncoupled neuron exhibits
no bistability.

The dependence on the parameter S /� of the driving
strength f� at the saddle-node bifurcation point, which exists
for 0	S	� ln B, is displayed in Fig. 2. It is obtained as the

0 0.1 0.2 0.3 0.4 0.5
0

0.5

1

1.5

2

2.5

fν

m

(B−1,0)

FIG. 1. �Color online� Black: gain curves m as a function of f�
in the mean-driven limit. Gray �red online� dashed line: the loca-
tions of the saddle-node bifurcation points on the gain curves. The
parameter values are B=14 /11=1.2727, and �=1. The reversal and
threshold potentials satisfy Eq. �2�. The coupling strengths along the
gain curves are �left to right� S=0.3, S=� ln B=0.2412, S=0.2, S
=0.1, and S=0.

0.05 0.1 0.15 0.2

0.14

0.16

0.18

0.2

0.22

0.24

0.26

S/τ

fν

FIG. 2. The f� coordinate, f�, of the firing-rate saddle-node
bifurcation as a function of S /�. The parameter values are B
=14 /11=1.2727 and �=1. The reversal and threshold potentials
satisfy Eqs. �2�.
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minimum value, f�, of f� in Eq. �28b�, from which we also
see that it is clearly a function of the ratio S /� alone. As
S /�→0 along this bifurcation curve, f�→B−1, again indi-
cating the absence of a bistability region for an uncoupled
neuron. The curve of the saddle-node bifurcation point loca-
tions in the f�−m plane, parametrized by the coupling con-
stant S, is shown in gray �red online� in Fig. 1.

We remark that, for the current-based version of the IF
model �1�, the analog of Eq. �27� can be solved explicitly for
the external driving strength f� in terms of the firing rate m
�66,67�. The gain-curve shapes in the mean-driven limit for
both types of models are similar.

VI. EXACT IMPLICIT SOLUTION

To address the gain curves with finite synaptic-input fluc-
tuations as obtained from the full Eq. �23�, it will be conve-
nient to introduce the new independent variable

x =
�E − �r

�E − v
. �30�

Note that the reset potential v=�r here corresponds to x=1
and the firing threshold v=VT to x=B, with B as in Eq. �15�.

It will also be convenient to introduce the new dependent
variable ��x�, which must satisfy the requirement ��x�dx
=
�v�dv. This requirement gives


�v� =
x2��x�
�E − �r

, �31�

and Eqs. �23�, �30�, and �31� imply that the equation for the
density ��x� becomes

q2x2�� + x�x + q2 − a�� = − m� , �32�

where the prime denotes differentiation upon x. The bound-
ary condition �10� becomes

��B� = 0 �33�

and the normalization condition �13� becomes

�
1

B

��x�dx = 1, �34�

with B as in Eq. �15�.
The exact solution of Eq. �32�, satisfying the conditions

�33� and �34�, is given by

��x� =
m�

q2 xa/q2−1e−x/q2�
x

B

s−a/q2−1es/q2
ds . �35�

Integrating the density �35� over the interval 1	x	B, we
find that the normalization condition �34� becomes

m�

q2 �
1

B

s−a/q2−1es/q2
ds�

1

s

xa/q2−1e−x/q2
dx = 1, �36�

which can be rewritten in terms of the confluent hypergeo-
metric function 1F1 �68� as

m�

a ��1

B 1

s 1F1�1,
a

q2 + 1,
s

q2
ds +
q2

a 1F1� a

q2 ,
a

q2 + 1,−
1

q2

��B−a/q2

1F1�−
a

q2 ,−
a

q2 + 1,
B

q2

− 1F1�−

a

q2 ,−
a

q2 + 1,
1

q2
�� = 1. �37�

After performing the last integration and transforming the
result using known identities for �generalized� hypergeomet-
ric functions �69�, we finally arrive at

m�

a
�ln B +

1

a + q2�B 2F2��1,1�,�2,
a

q2 + 2�,
B

q2

− 2F2��1,1�,�2,

a

q2 + 2�,
1

q2
� +
q2

a 1F1�1,
a

q2 + 1,
1

q2

� �B−a/q2

e�B−1�/q2

1F1�1,−
a

q2 + 1,−
B

q2

− 1F1�1,−

a

q2 + 1,−
1

q2
�� = 1. �38�

Here, kFl is the generalized hypergeometric function

kFl���1, . . . ,�k�,��1, . . . ,�l�,z� = �
n=0

�
��1�n ¯ ��k�n

��1�n ¯ ��l�n

zn

n!
,

with ��� j =���+1�¯ ��+ j−1� being the Pochhammer sym-
bol �68�.

In light of the definitions of the coefficients a and q2 in
Eq. �18�, we observe that Eq. �38� gives a nonlinear equation
connecting the driving f� and the firing rate m.

VII. GAIN CURVES

Equation �38� is of little practical use in computing the
gain curves due to the difficulties in evaluating hypergeomet-
ric functions of large arguments �70�. Instead, we can rewrite
Eq. �36� as

m�

q2 �
1/q2

B/q2

y−a/q2−1ey��� a

q2 ,y
 − �� a

q2 ,
1

q2
�dy = 1,

�39�

where ��� ,z�=�0
z t�−1e−tdt is the incomplete Gamma func-

tion, and perform the integration and solve the equation in
Eq. �39� numerically using the functional dependence �18� of
a and q2 on f� and m.

Alternatively, we can recall that our investigation of the
gain curves is only valid in the small-fluctuation limit �22�,
q2 /a�1, of the Fokker-Planck equation �20�, due to the con-
ditions �14� and �16� imposed by the diffusion approxima-
tion. In this limit, as described in the Appendix, it follows
from the result of �71� that the probability density ��x� in Eq.
�35� has an asymptotic expansion in terms of q2 /a, uniform
in x, a, and/or q, whose first two terms are given by
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��x� �
m�

xq
�exp�a��2�B� − �2�x��

2q2 
��2

a
D���B�

q
�a

2



−
q

a��B�
+

q

B − a
� − ��2

a
D���x�

q
�a

2

 −

q

a��x�

+
q

x − a
�� , �40�

where

��x� = sgn�x − a��2� x

a
− 1 − ln

x

a

 �41�

and D� · � denotes the Dawson integral

D�z� = e−z2�
0

z

ey2
dy . �42�

Using Eq. �34�, we obtain the gain curves by numerically
integrating the approximation �40� over the interval 1	x
	B and using the functional dependence �18� of a and q2 on
f� and m.

To compute numerically the gain curves, such as those
presented in Fig. 3, in practice, we combine the above two
numerical methods, either using Eq. �39� or �40�. We switch
from the former to the latter when the value of q2 /a drops
below a prescribed tolerance, �s. �This is to ensure that the
error of the asymptotic formula �40� at larger values of q2 /a
does not affect the gain-curve shapes. However, formula �40�

is so accurate that in all the figures presented in this work,
the difference between the probability density functions and
gain curves obtained by the two methods is imperceptible.�
We see that for small external driving spike strength f and
proportionally large effective network size pN, the gain
curve closely follows its no-fluctuations counterpart from
Fig. 1, except for a smoothed-out corner near the point f�
=B−1, m=0. In particular, the small-f gain curves still ex-
hibit bistability. As the value of the external driving spike
strength f increases and the effective network size pN de-
creases at the same rate, i.e., the amount of fluctuations in the
input to a single neuron increases, the backward-sloping por-
tion of the gain curve inside the bistability interval steepens
and the bistability interval narrows until it disappears. As f�
decreases, a gain curve eventually approaches the f� axis
exponentially fast in f� �and f /��, as we will further discuss
in Sec. VIII A below.

For large values of the driving f�, the gain curves in Fig.
3 increase almost linearly. In this regime, q2�1, the exact
probability density function �35� behaves asymptotically as


�x� �
m�

ax
�1 − � x

B

a/q2� . �43�

The normalization condition �34� yields the equation

m�

a
�ln B −

q2

a
�1 − B−a/q2

�� � 1 �44�

for the asymptotic behavior of the gain curves, from which
the slopes of the straight-line asymptotes can easily be com-
puted. In particular, for q2 /a�1, the limiting slope agrees
with that of the straight-line asymptote in the mean-driven
limit, given by Eq. �29�.

On the right of Fig. 4, we present the probability density
functions 
�v� corresponding to four specific points on the
gain curve for f =0.001 in Fig. 3, which is replotted on the
left of Fig. 4. The function 
�v� in the f� regime below the
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FIG. 3. �Color online� Gain curve: the firing rate m as a function
of the driving strength f�. The reversal and threshold potentials
satisfy Eq. �2�. The parameter values are �=1, S=0.1, and �=1,
where pN=� / f and �s=0.0002. The strength of the external input
spikes f varies from curve to curve. From left, the values of f are
0.1, 0.05, 0.025, 0.005, 0.001, 0.0001, and 0, respectively. Note
that, along the left three gain curves �dashed; red online�, f does not
satisfy the small-jumps condition �14� and the Fokker-Planck equa-
tion �20� becomes therefore progressively less valid with increasing
f and with proportionally decreasing pN. The corresponding mini-
mal numbers of jumps needed for a neuron to reach VT beginning at
�r, computed from Eq. �14�, are �2, 4, 8, 40, 200, and 2000, re-
spectively. The rightmost gain curve �gray; green online� was plot-
ted using the parametrization �28� in the mean-driven limit �f =0,
pN→�, �→�, f� finite�. Inset: convergence of the gain curves to
the mean-driven limit gain curve near the upper turning point as f
decreases and pN increases proportionally.
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FIG. 4. �Color online� Probability density functions 
�v� at spe-
cific points on the m− f� gain curve. The reversal and threshold
potentials satisfy Eq. �2�. The parameter values are �=1, f =0.001,
S=0.1, pN=1000, and �s=0.0002. �a� Specific points on the gain
curve. �b� 
�v� at these points. The functions 
�v� were computed
via the asymptotic formula �40�. �Note that 
�v� computed numeri-
cally via Eqs. �30�, �31�, and �35� instead of Eq. �40� appear iden-
tical.� Inset: the boundary layer at v=VT of the probability density
functions 
�v� corresponding to the location “D” on the high-firing
part of the gain curve as shown in black dashed line. �Note the scale
on the v axis.� In gray �green online� is shown 
�v� in the mean-
driven limit, described by Eq. �24�.
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bistability interval appears very similar to a Gaussian curve,
a point we will return to in Sec. VIII A. Progressing up the
gain curve, the density functions undergo a shape change
until the one in the f� regime well above the bistability in-
terval appears indistinguishable from the mean-driven-limit
density 
�v� in Eq. �24�, except in a thin boundary layer near
v=VT. In that layer, the density 
�v� in Fig. 4 decreases
rapidly and vanishes at v=VT to satisfy the boundary condi-
tion �10�. We will further elaborate on the gain-curve shapes
in the f� regimes above and below the bistability interval in
Sec. VIII.

VIII. ASYMPTOTIC BEHAVIOR OF GAIN CURVES IN
THE SMALL-FLUCTUATION LIMIT

In the small-fluctuation limit �22�, i.e., for q2 /a�1, we
can derive exact asymptotic expressions for the probability
density function 
�v� and the pieces of the gain curves that
lie in the fluctuation-driven �a	B� and mean-driven �a
�B� regimes, respectively. Roughly speaking, in Fig. 3, the
former regime corresponds to the portion of the gain curve
near the f� axis and the latter to the portion near the limiting
mean-driven gain curve �28�, with both staying O�q /�a�
away from the threshold value f�=B−1, m=0. The
asymptotic expansions are derived using Laplace’s method
�72� on the integral in Eq. �35�.

As we recall from Sec. V, in the fluctuation-driven re-
gime, a	B, the effective reversal potential VS in Eq. �25�
lies below the firing threshold, VS	VT. The few neuronal
firings that occur in this regime are driven by the membrane-
potential fluctuations of individual neurons. The smallness of
these fluctuations when q2 /a�1, i.e., when f /�, S /�pN�1
in accordance with Eq. �14�, leads to low firing rates. As we
show in Sec. VIII A below, the neuronal firing rate m is in
fact an exponentially small function of the voltage jump size
f /�.

In the mean-driven regime, a�B, the effective reversal
potential VS in Eq. �25� lies above the firing threshold, VS
�VT. As we recall from Sec. V, due to the conditions �14�
and �16�, the effect of the external drive is nearly constant in
time and the neuronal network firing rate is largely con-
trolled by the mean of this drive. We now explore the
asymptotic expressions for the firing rates in these two re-
gimes in detail.

A. Fluctuation-driven regime

In the fluctuation-driven regime, a	B �VS	VT�, the
leading order in q2 /a of the density ��x� is given by

��x� �
m�

a�B − a�
exp�a�2�B�

2q2 
exp�−
�x − a�2

2q2a

 , �45�

with ��x� as in Eq. �41�, which has a relative error of
O�q2 /a� near x=a and is exponentially accurate everywhere
else.

The normalization condition �34� used on Eq. �45� gives

m�q

B − a
exp�a�2�B�

2q2 
� �

2a�1 + erf� a − 1
�2aq


� � 1, �46�

where erf� · � denotes the error function erf�z�
= �2 /����0

ze−t2dt.
Formula �46� implies that the firing rate m is exponen-

tially small in q2 /a. Therefore, in this case, from Eq. �18�,
we find asymptotically

a � 1 + f�, q2 �
f2�

2�
. �47�

In other words, to within an exponentially small error, the
firing rate gain in this case is induced by the fluctuations in
the feed-forward input to the neuron while the feed-back
synaptic input from other neurons in the population is negli-
gible. This phenomenon of “asymptotic decoupling”—i.e.,
under a small-fluctuation subthreshold drive, the network is
asymptotically decoupled—is important for understanding
small-fluctuation network dynamics.

Except when a−1�O�q /�a�, the leading order of the
bracketed term containing the error function in formula �46�
equals 2. From this, the assumption f �1 and the fact that the
firing rate m is exponentially small in q2 /a �and so in f� in
this regime—and therefore Eq. �47� holds—we find for m the
explicit leading-order approximation

m � �B − �1 + f����1 + f�

��f2�

�exp� 2�

f2�
��1 + f���1 + ln

B

1 + f�

 − B�� . �48�

We remark that Eq. �48� is not valid uniformly in the f�
interval between 0 and B−1. In particular, near f�=B−1, the
right-hand side of Eq. �48� becomes of size O�1�, contradict-
ing the exponential smallness of the firing rate m, and so Eq.
�48� ceases to be valid there, as can be seen from Fig. 5. This
right-hand side has a maximum at
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FIG. 5. �Color online� Comparison between a gain curve �black
dashed� computed from the steady-state Fokker-Planck equation as
described in Sec. VII �displayed on left of Fig. 4� and its approxi-
mations in the fluctuation-driven �light gray; green online� and
mean-driven �dark gray dash-dotted; red online� regimes, computed
via Eqs. �48� and �28�, respectively. The parameter values along the
computed gain curve are �=1, f =0.001, S=0.1, pN=1000, and �s

=0.0002. The reversal and threshold potentials satisfy Eq. �2�.
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f� = B − 1 −� fB�B − 1�
2�

+ O�f�

and then vanishes at f�=B−1. The location of this maximum
indicates that the size of the excluded region is O��f�.

From Eqs. �30� and �47�, it is clear that the probability
density function 
�v� corresponding to the density ��x� in
Eq. �45� is also Gaussian, given by the expression


�v� ����1 + f��3

�f2�
exp�−

��1 + f��3�v − VS�2

f2�

 , �49�

with

VS �
�r + f��E

1 + f�
�50�

by Eq. �25�.
In Fig. 5, we present a comparison between the approxi-

mate gain curve computed from Eq. �48� and the gain curve
displayed on left of Fig. 4. The approximate gain curve fol-
lows the uniformly valid gain curve �black dashed line� very
closely in the entire fluctuation-driven regime, to the point of
indicating the location of the latter curve’s bottom turning
point shortly after the validity of Eq. �48� breaks down.
Moreover, Eq. �49� provides an excellent approximation for
the probability density function 
�v�, as calculated via Eq.
�40�, throughout the fluctuation-driven regime. In particular,
the curve 
�v� corresponding to the location “A” in Fig. 4
cannot be distinguished from its approximation by Eq. �49�.
�Data not shown.� For the curve in Fig. 4 corresponding to
the location “B,” which is very close to the bottom turning
point of the gain curve, this Gaussian approximation still
remains satisfactory, as shown in Fig. 6, even this close to
the turning point.

We now also remark that Eq. �48�, with an additional
factor of 1/2 on the right-hand side, describes the gain-curve
shape for f��1, regardless of the value of the external driv-
ing spike strength f . This is because the argument in the error

function in Eq. �46� becomes O��f�� and so the leading or-
der of the bracketed term containing the error function in Eq.
�46� now equals 1 rather than 2 as in Eq. �48�.

Finally, we again comment on the f →0 limit in the
fluctuation-driven regime, a	B or VS	VT. This argument
complements the argument made in Sec. V. In particular, Eq.
�48� and the discussion in the paragraph following it imply
that m→0 as f →0 in the entire interval 0	 f�	B−1.
Moreover, Eq. �45�, together with the normalization condi-
tion �34�, implies that ��x�→��x−a� and so indeed 
�v�
→��v−VS�, where �� · � again represents the Dirac delta
function, as was mentioned in Sec. V. This argument reaf-
firms the observation that in the absence of input conduc-
tance fluctuations, if VS	VT, in the steady state, the external
input makes all the neuronal membrane potentials equilibrate
at v=VS and so no neurons can fire, as consistent with intu-
ition.

B. Mean-driven regime

In the mean-driven regime, when a�B �VS�VT�, again
using a Laplace-type asymptotic expansion �72� of the inte-
gral in Eq. �35�, we obtain the leading-order term in q2 /a of
the density ��x� as

��x� �
m�

x�a − x��1 − exp�−
1

q2� a

B
− 1
�B − x��� .

This equation corresponds to the probability density function


�v� �
m�

a�VS − v��1 − exp�−
�a − B��VT − v�

q2��E − VT� 
� �51�

of the original voltage variable v. This expression is equiva-
lent to Eq. �24�, except in an O�q2 /a� thin boundary layer
near the firing threshold v=VT. This layer ensures that the
boundary condition �33� is satisfied. We recall that such be-
havior was already observed in Fig. 4. At O�1�, the normal-
ization condition �34� again yields for the firing rate m the
logarithmic equation �27�, whose solution via the parametri-
zation �28� was discussed in Sec. V.

In Fig. 5, a comparison is shown between the gain curve
presented on left of Fig. 4 and its approximation in the mean-
driven limit obtained via Eqs. �28� for the external driving
spike strength f =0.001. We see that the approximation is
excellent deep into the mean-driven regime, but that it gradu-
ally breaks down upon approaching the bistability region in
which it is invalid. For the external driving value f� corre-
sponding to the location “D” on the gain curve in Fig. 4, the
probability density function 
�v� computed via Eqs. �28� and
�51� is indistinguishable from that computed via the uniform
asymptotic approximation �40�. �Data not shown.� The latter
is the curve “D” on the right of Fig. 4, whose boundary-layer
detail is presented in the inset in Fig. 4. In Fig. 7, we display
the comparison between the probability density function 
�v�
corresponding to the location “C” on the left of Fig. 4 and its
approximation given by Eq. �40�, computed at the same
value of the driving f�. The agreement still remains satisfac-
tory, but notice that 
�v� computed from Eq. �40� has a
smaller area. This is an artifact of the exponential boundary-
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FIG. 6. �Color online� Comparison between the probability den-
sity function 
�v� computed using the uniform asymptotic approxi-
mation �40� of the steady Fokker-Planck solution and the Gaussian
approximation �49�, which is valid in the fluctuation-driven regime.
The parameter values are �=1, f =0.001, S=0.1, and pN=1000. The
reversal and threshold potentials satisfy Eq. �2�. Inset: the value of
the external driving strength f� is the same as at the location “B” on
the left panel of Fig. 4.
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layer term in Eq. �40� subtracting an O�q2 /a� amount from
the area, which cannot be included in the area evaluation at
O�1�.

As can be seen from the inset in Fig. 3, the mean-driven
approximation via Eqs. �28� improves with decreasing f near
the upper turning point of the gain curve and eventually also
along its unstable branch, but is always the least accurate in
an O��f� neighborhood of the point �f� ,m�= �B−1,0�. In
particular, recall that in the zero-fluctuations limit discussed
in Sec. V, this point separates two very distinct regimes of
the probability density function 
�v�: 
�v�=��v−VS� along
the f� axis and 
�v� given by Eq. �24� along the gain curve
parametrized by Eqs. �28�, with a discontinuous transition
between the two at the threshold point �f� ,m�= �B−1,0�.

IX. VALIDITY OF THE FOKKER-PLANCK
DESCRIPTION

In this section, we discuss the accuracy of the gain curves
and voltage probability density functions obtained using the
Fokker-Planck equation �20� as an approximation to their
counterparts in a more realistic IF network with finite rise
and decay conductance times obtained via direct numerical
simulations. In these simulations, we used an IF model of the
same form as Eq. �1�, but with the instantaneous �-function
conductance time course replaced by the �-function time
course

G�t� =
1

�d − �r
�exp�− t/�d� − exp�− t/�r����t� , �52�

where ��t� is the Heaviside function, i.e., ��t�=1 for t�0
and 0 otherwise. For the �-function conductance time course
assumed in the model �1� to be a good approximation of the
more realistic conductance time course �52�, short conduc-
tance rise and decay times, �r=0.1 ms and �d=0.2 ms,
were used in the simulations.

From Secs. II and IV, we recall that the quantity control-
ling the validity of both the Poisson approximation of the
network spike train and the diffusion approximation leading
to the Fokker-Planck equation �20� from the kinetic equation
�5� is the number of spikes that a neuron at the reset value �r
must receive in order to spike itself. The requirement that
this number must be sufficiently large results in the estimates
in Eq. �14�, which imply that the strength of the external
driving spikes, f , must be small and the effective size of the
network, pN, large. To examine how the validity of Eq. �20�
deteriorates with f increasing and pN decreasing at the same
rate, we compare a set of theoretical gain curves �cf. Fig. 3�
with gain curves computed via direct numerical simulations
at the same parameter values. The results are presented in
Fig. 8.

We remark that, as the strength of the external driving
spikes, f , decreases and the effective size of the network, pN,
increases, the simulated IF network develops a strong ten-
dency to oscillate in a nearly synchronized, periodic manner
�67,73,74�. Because of this tendency, the basin of attraction
of the steady asynchronous solution studied here, described
by the probability density function 
�v�, becomes exceed-
ingly small for small f and large pN. This leads to the diffi-
culty of observing this solution in simulations even for very
small synaptic release probability. The tendency of the net-
work to oscillate can be broken by incorporating into the
model additional physiological effects, such as random trans-
mission delays which are due to randomness in axonal
propagation velocities and lengths �75–77�. These delays do
not alter the steady-state equation �23� or its solution 
�v�
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FIG. 7. �Color online� Comparison between the probability den-
sity function 
�v� computed using the uniform asymptotic approxi-
mation �40� of the steady Fokker-Planck solution and the approxi-
mation �51�, which is valid in the mean-driven regime. The reversal
and threshold potentials satisfy Eq. �2�. The parameter values are
�=1, f =0.001, S=0.1, and pN=1000. Note that the mean-driven
approximation curve is only normalized to O�1� and is missing an
O�q2 /a� amount, as explained in the text. Inset: the value of the
external driving f� is the same as at the location “C” on the left
panel of Fig. 4.
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FIG. 8. �Color online� Comparison of gain curves evaluated
theoretically �black, dashed� as in Sec. VII and shown in Fig. 3 and
gain curves computed via numerical simulations �gray; green on-
line�. The reversal and threshold potentials satisfy Eq. �2�. The pa-
rameter values are �=1, S=0.1, �=1, where pN=� / f . The strength
of the external input f assumes the values 0.1, 0.025, 0.005, and
0.002, respectively, on the gain curves from left to right. In the
simulations, N=104, except on the bottom half of the gain curve
corresponding to f =0.002, where N=2�104. The synaptic release
probability p is calculated to yield the appropriate “effective net-
work size” pN. Poisson-distributed random delays were used in
computing the gain curve for f =0.002; the average delay was 6 ms
on the bottom half and 4 ms on the top half of the gain curve. Note
that, for large values of the external driving strength f�, the gain
curves computed numerically appear to all asymptote toward the
straight line given by Eq. �29�, which is the asymptote of the gain
curve �28� in the mean-driven limit for the same values of � and S.
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�67�. We incorporated Poisson-distributed delays in the IF
neuronal network simulation to obtain the gain curve for f
=0.002 in Fig. 8 and the corresponding probability density
functions 
�v�, as shown in Fig. 9.

For the external driving spike strength f =0.002 �and the
corresponding effective network size pN=500�, we can see
that the agreement between the theoretically and numerically
obtained gain curves in Fig. 8 is excellent. For these values
of f and N, the minimal number of spike-induced jumps that
a neuron with the reset membrane-potential value must re-
ceive in order to spike itself equals �100. In Fig. 9, we show
a comparison between the theoretical voltage probability
density functions and those obtained via numerical simula-
tion for the same value set of the external-drive strength f�.
We see that the agreement is generally very good, except, for
the probability density functions in the mean-driven regime,
near the reset value at v=�r and the threshold value v=VT.
These two regions of discrepancy arise due to a common
reason, which is because the vanishing boundary condition

�VT�=0 in Eq. �10� is not satisfied. This is a consequence of
the finite �rise and� decay conductance time�s�, as explicitly
demonstrated in Fig. 10. We will elaborate more on this point
in the discussion in Sec. X.

The two leftmost pairs of gain curves in Fig. 8 correspond
to the larger values of the external driving spike strength, f
=0.1 and 0.025, and the proportionally smaller values of the
effective network sizes, pN=10 and 40. For these values of f
and pN, the minimal numbers of spike-induced voltage
jumps needed to reach threshold are 2 and 8, respectively.
From Fig. 8, we see that the theoretically and numerically
obtained gain curves still agree quite well for low values of

the driving f� when the firing rates are also low. In particu-
lar, the theoretical gain curves can be used to predict quite
well when the firing rates will start increasing and their sizes
will become O�1�. However, the theoretical curves cannot be
used to predict correctly the straight-line asymptotes of the
numerically obtained gain curves because the theoretically
predicted slopes are too large. In particular, the straight-line
asymptotes of the numerically obtained gain curves all seem
to converge to the straight-line asymptote of the mean-driven
gain curve corresponding to the same parameter values, in
contrast to those of the theoretically predicted gain curves.
This discrepancy clearly signifies the breakdown of the va-
lidity of the Fokker-Planck equation �20� in the large f , small
pN regime.

To shed further light on how the validity of the Fokker-
Planck equation �20� breaks down with increasing external
driving spike strength f and decreasing effective network
size pN, we display in Fig. 11 the contrast between the volt-
age probability density functions 
�v� computed via the
Fokker-Planck equation �20� and numerical simulations for
the external driving spike strength f =0.1 and effective net-
work size pN=10. For this spike strength and network size,
the diffusion approximation leading to the Fokker-Planck
equation �20� is clearly invalid, as only two consecutive ex-
ternal driving spikes suffice to propel a network neuron to
fire. One can see from Fig. 11 that the two sets of functions

�v� still share some amount of similarity, e.g., their means
progressively move toward higher membrane-potential val-
ues with increasing external driving strength f�. On the other
hand, the details of the two density sets are very different,
with the numerically obtained densities being much rougher.

Finally, we discuss the implications of the theoretically
predicted bistability. This bistability underlies the hysteresis
that can be observed in the simulations. By slowly ramping
the strength f� of the external drive up and down through the
bistability interval �26�, the resulting network firing rate
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FIG. 9. �Color online� Voltage probability density functions ob-
tained via the Fokker-Planck equation �20� and numerical simula-
tions for the external driving spike strength f =0.002 and the effec-
tive network size pN=500, for which Eq. �20� gives a valid
approximation. Starting with the graph with the highest maximum
and ending with the graph with the lowest maximum, the corre-
sponding values of the external driving f� are �a� 0.2, 0.22, 0.24, �b�
0.26, 0.32, 0.38, 0.44, and 0.5. Other parameter values are �=1, S
=0.1, and �s=0.0002. The reversal and threshold potentials satisfy
Eq. �2�. The minimal number of spike-induced voltage jumps
needed for a neuron to reach VT beginning at �r, computed from Eq.
�14�, is �100. In the simulations, N=104 and p=0.05. Poisson-
distributed random delays were used in the simulation; the average
delay was 4 ms. Inset �a�: the locations of the displayed voltage
probability density functions along the gain curve. The value of the
probability density function’s maximum decreases with increasing
value of f� along the gain curve. Inset �b�: the probability density
functions obtained via simulations do not satisfy the boundary con-
dition �10� due to finite rise and decay conductance times.
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FIG. 10. �Color online� Detail near v=VT of the voltage prob-
ability density computed via numerical simulations for a feed-
forward neuron with the external driving spike strength f =0.0025
and the driving strength f�=40. Other parameter values are �
=1�=20 ms�, S=0, and N=1. The reversal and threshold potentials
satisfy Eq. �2�. The conductance rise time in Eq. �52� is instanta-
neous, �r=0. The decay conductance time �=�d is varied as shown
in the legend, with �-PSP denoting the instantaneous conductance
time course used in Eq. �1�. Note how the value of 
�VT� decreases
with decreasing �d and vanishes for �-PSP.
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traces out the bottom and top stable branches of the gain
curve, respectively, and undergoes sharp jumps to the re-
maining stable branch near the saddle-node bifurcation
points where one stable branch disappears. The size of the
hysteresis loops depends on the ramping speed. The slower
the ramping speed, the closer are the loops to the theoreti-
cally predicted bistability curves. Examples of such hyster-
esis loops for the small-fluctuation regime are presented in
Fig. 12 and show good agreement between the theoretical
gain-curve prediction and the hysteretic gain curve branches
computed via numerical simulations. On the left, the result of

a simulation with a very slow ramping speed is shown. On
the right, the results of 50 simulations with a faster ramping
speed show that, at faster speeds, jumps are initiated at ran-
dom f� values in the vicinity of the bifurcation values. More-
over, the resulting hysteresis loops are smaller than for the
slower ramping speed. Note that, in the mean-driven limit
�f →0, N→�, �→�, f� finite�, the jump on the up-ramp
branch would be initiated near the point f�=B−1, m=0. We
should remark that the probability of fluctuation-induced ran-
dom transitions between the two stable branches is very
small in our small-fluctuation regime and we have not ob-
served them in our simulations. Moreover, due to random
transmission delays incorporated in our system, the asyn-
chronous regime becomes more stable. We have thus not yet
observed switching between the asynchronous and fast oscil-
latory regimes, which were reported for a discrete model
without leakage in �74�.

X. DISCUSSION

In this work, we have addressed the basic properties of
the Fokker-Planck equation describing the conductance-
based IF neuronal network model. In addition to the assump-
tion that the dynamics of a neuronal network can be ad-
equately captured by one-point statistics, three main
assumptions lead to the description using the Fokker-Planck
equation. The first is the vanishing of the conductance rise
and decay time scales. The second is that the network dy-
namics is asynchronous, and the spike times of the entire
network can be approximated by a Poisson train. The third is
the diffusion approximation, justified when each neuron re-
ceives large numbers of spikes, each inducing only a very
small change of this neuron’s membrane potential, which
appears to be the case in some cortical neurons in vivo �78�.

We have addressed the consequences of the above second
and third assumptions in Sec. IX. In particular, we showed
that the gain curves and probability density functions ob-
tained via the Fokker-Planck equation �20� closely match
those obtained using numerical simulations of an IF network
with short but finite conductance rise and decay times in the
regime of small synaptic-input fluctuations in which the two
assumptions are valid. We also described how this compari-
son deteriorates with increasing amounts of synaptic-input
fluctuations.

We should remark that we avoided numerical simulations
with the instantaneous conductance time scale and the re-
lated question of whether and how the solutions of the
Fokker-Planck equation �20� and the corresponding solutions
of the kinetic equation �5� converge to one another in the
limit as the strength of the external-drive spikes f vanishes
and the Poisson rate � of the external drive and the network
size N increase without a bound. This question is nontrivial
in particular because Eq. �20� is not the corresponding
asymptotic limit of Eq. �5�; instead, it is the second-order
truncation for f small and � and N large but finite in the
Kramers-Moyal expansion of Eq. �5� �27�. In the time-
independent case, the true asymptotic limit is the mean-
driven equation �24�, which is equivalent to the first-order
truncation of Eq. �5� and is thus a highly singular limit. The
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FIG. 11. �Color online� Voltage probability density �a� obtained
theoretically from the Fokker-Planck equation �20� and �b� com-
puted via numerical simulations for the fixed external driving spike
strength f =0.1 and the effective network size pN=10, for which Eq.
�20� is not a valid approximation. Other parameter values are �=1,
S=0.1, and �s=0.0002. The reversal and threshold potentials satisfy
Eq. �2�. The values of the external driving strength f� increase from
the graphs with the highest to the graphs with the lowest maxima.
In the simulations, N=104 and p=0.001. The minimal number of
spike-induced voltage jumps needed for a neuron to reach VT be-
ginning at �r, computed from Eq. �14�, is �2.
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FIG. 12. �Color online� �a� Bistability and hysteresis in gain
curves obtained theoretically from the Fokker-Planck equation �20�
and the mean-driven approximation �28� and computed via numeri-
cal simulations for the external driving spike strength f =0.002 and
the effective network size pN=500. Note that the mean-driven
theory would predict the jump on the up-ramp branch of the gain
curve obtained by the simulations to be initiated near the point f�
=B−1, m=0. Other parameter values are �=1, S=0.2, and �s

=0.0002. The reversal and threshold potentials satisfy Eq. �2�. In
the simulations, N=104 and p=0.05. For each value of f�, � f�

=10 s of the network evolution was simulated. The difference be-
tween two consecutive f� values was ��f��=0.001, giving the
speed 10−4 s−1. Poisson-distributed random transmission delays av-
eraging 4 ms were used. �b� Hysteresis obtained in the simulations
using fast and slow ramping speeds. The hysteretic gain-curve
branches obtained for the slow ramping speed are the same as on
the top. For the gain curves obtained by fast ramping, an ensemble
of 50 simulation results is shown, with N=103, p=0.5, � f�=1 s,
��f��=0.0004, and speed=4�10−4 s−1.
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likely complicated nature of the approach to this limit can be
gleaned from the highly oscillatory behavior of the voltage
probability density function, described by an equation analo-
gous to Eq. �5�, even for a feed-forward, current-based IF
neuron �79�. Therefore, studying this limit will be relegated
to a future publication.

The assumption of asynchronous dynamics becomes vio-
lated for small values of the input fluctuations when the net-
work exhibits synchronous oscillations. As was seen in Sec.
IX, in this case, decreasing the synaptic release rate and/or
including random transmission delays �75–77� help to stabi-
lize the asynchronous solutions, thus giving rise to the cor-
responding gain curves described here. Oscillations in a
current-driven IF model analogous to Eq. �1�, with a time-
periodically modulated Poisson rate of the external drive,
were studied in �46,53,80�. In our recent study �67� of syn-
chrony in the current-driven version of the IF model �1�, the
asynchronous solutions of the current-driven IF model and
the bistability of its gain curves were similarly addressed
using random transmission delays.

Incorporation of finite conductance rise and decay times
changes the kinetic theory approach dramatically. In particu-
lar, Eqs. �5� and �20� in this case become partial differential
�-difference� equations with time, voltage, and conduc-
tance�s� as independent variables and an additional closure
needs to be employed to address the voltage statistics alone
�54,55�. After the diffusion approximation leading to the ana-
log of Eq. �20� is made, this closure is obtained via the maxi-
mal entropy principle �56�. The resulting kinetic theory con-
sists of a system of equations, which in the simplest scenario
describe the voltage probability density and the first conduc-
tance moment conditioned on the voltage value. The Fokker-
Planck equation �20� can be recovered from this system in
the limit of vanishing conductance time scales when the con-
ditional conductance moment becomes slaved to the voltage
probability density 
�v�. However, while the periodic flux
boundary condition �21� is retained in this description, the
absorbing boundary condition �10� is replaced by a periodic
boundary condition for the conditional conductance moment,
i.e., the condition �VT−�E�
�VT�= ��r−�E�
��r�. The differ-
ence in the boundary conditions stems from the noncommut-
ing of two different limits: vanishing fluctuations and van-
ishing conductance time scales. The Fokker-Planck
descriptions with the two differing boundary conditions pro-
duce very similar results �55�, except for the values of 
�v�
very close to the firing threshold v=VT. Note that the prob-
ability density functions in Fig. 9, in particular, in its inset,
further demonstrate this point. �See also the corresponding
discussion in Sec. IX.� Therefore, both sets of boundary con-
ditions can be useful, but the conditions for the use of either
should depend on the physiological modeling requirements
in each specific case under investigation.

Finally, we remark that while this paper addresses asyn-
chronous dynamics of an idealized neuronal network model,
the underlying bifurcation scenario of the gain curves, which
are bistable in the regime of small synaptic-input fluctuations
and become single-valued as the amount of synaptic-input
fluctuations increases, remains valid in much more realistic
neuronal models. In particular, similar bistability is present
in the gain curves of excitatory complex cells in models of

orientation and spatial-frequency tuning in the primary visual
cortex, which cover four orientation pinwheels with �104

neurons, with both excitatory and inhibitory as well as
simple and complex cells, and incorporate realistic cortical
architecture �26,81�. In these models, the amount of fluctua-
tions is controlled by the sparsity of synaptic connections
and/or the ratio between the amounts of fast and slow exci-
tatory conductances. The knowledge of the underlying bifur-
cation structure makes it possible to constrain the model pa-
rameters, in particular, the amount of sparsity, so that the
models operate in physiologically plausible regimes and re-
produce the correct properties of the tuning curves �26,81�.
This bifurcation scenario was therefore in these modeling
works a crucial element in the understanding of the mecha-
nisms that produce the correct tuning curves in the compu-
tational models of the primary visual cortex.
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APPENDIX: UNIFORM ASYMPTOTICS FOR THE
VOLTAGE PROBABILITY DENSITY

In this appendix, we present a derivation of the
asymptotic formula �40� for the probability density function
��x�, which was used in Sec. VII. For this purpose, we use
the result of �71� concerning asymptotic behavior of the
complementary incomplete � function, defined by

���,z� = �
z

�

t�−1e−tdt �A1�

for �, z�0, and by analytic continuation elsewhere. Defin-
ing

� = sgn� z

�
− 1
� z

�
− 1 − ln

z

�
�A2�

for z /��0 and by analytic continuation elsewhere, �71�
states that the asymptotic expansion

e−i����− �,ze−�i� �
1

��� + 1�
��i erfc�− i���

2



+�2�

�
e��2/2� 1

�
−

1

z/� − 1

�

+ O�e��2/2�−3/2� , �A3�

holds for the complementary incomplete gamma function
�A1� uniformly as �→� and 
arg z
	�−�, for any small �.
Here, erfc� · � is the complementary error function erfc�z�
= �2 /����z

�e−t2dt. We remark that as z→�, the apparent sin-
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gularity in Eq. �A3� cancels out because 1 /�−1 / �z /�−1�
→1 /3.

We are interested in the asymptotic expansion of the prob-
ability density ��x� in Eq. �35� for small values of q2 /a,
which is uniform in x, a, and q, in particular around the
transition point a=B. The key to this expansion is the corre-
sponding asymptotic expansion of the integral in Eq. �35�,

F�x� = �
x

B

s−a/q2−1es/q2
ds . �A4�

Using the substitution s=q2vei�, Eq. �A4� can be rewritten in
the form

F�x� = q−2a/q2
e−i�a/q2���−

a

q2 ,
x

q2e−i�
 − ��−
a

q2 ,
B

q2e−i�
� ,

�A5�

where ��· , ·� is again the complementary incomplete gamma
function �A1�. Thus, in our problem, z=x /q2 and �=a /q2,
and we can again put �=��x� as in Eq. �A2�. Equations �A3�
and �A5�, and Stirling’s formula for ��a /q2+1�, then give
the two-term expansion

F�x� �
q

�2�
a−a/q2+1/2ea/q2�i� erfc�−

i��x�
q

�a

2



−�2�

a
qea�2�x�/2q2� 1

x/a − 1
−

1

��x�



− i� erfc�−
i��B�

q
�a

2



+�2�

a
qea�2�B�/2q2� 1

B/a − 1
−

1

��B�

� . �A6�

From Eqs. �35�, �A4�, and �A6� and the formula erfc�−iz�
=1+2iD�z� /��, with D�z� being the Dawson integral �42�,
we finally obtain the expansion �40�.

We remark that the simplified expansions �45� and �51�
can easily be obtained from Eq. �40� using the large-z
asymptotic behavior of the Dawson integral, D�z��1 /2z
+O�1 /z3�.

Numerically, the expansion �40� was evaluated as follows.
The Dawson integral �42� was computed using its piecewise-
smooth approximation by rational functions and continued
fractions with eight terms, developed in �82�. The difference
1 /��x�−1 / �x /a−1� was computed exactly for 
x−a
��0
and using a ten-term Taylor-series expansion around x=a for

x−a

�0, with �0=10−2.
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